
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CSCE121: Introduction to Program Design and Concepts

Practice Questions for Final

April 26, 2018

Question 1: Split a sentence into words

Question 2: Linked list polynomials

Question 3: Recursive maximum

Question 4: Is there a loop in my linked list?

Question 5: Vehicles and registration taxes

1 of 6

Question 1: Split a sentence into words (50)

You are given a piece of text as a ‘\0’ terminated char[] and you need to split it into words that are then
stored in a linked list. The idea is to save memory in representing strings with a lot repetitions by reusing
repeated words. The following figure shows the intended output given the string “nom nom yummy noodles
nom”

ptr_to_return

"nom" "yummy" "noodles"

Use the following type to store each word:

struct wrd_t {

char *str; // A pointer to the string data

wrd_t *next; // Next word, or NULL.

};

The text for each word must be copied into an array of chars that is dynamically allocated to be just
the right size (including a ‘\0’). The field str is then set to point to it. When the input is a word that has
already been encountered, you should reuse the previously allocated memory.

1. Write a function called split that returns a pointer the head of the linked list structure storing the
words. The declaration is wrd_t* split(char s[])

2. Write a function that, given a pointer to the head of the linked list, prints the sentence. Name the
function print_list.

3. Write a function clean_up that will clean up the linked list structure returned from split. If you
execute clean_up(split("any sentence here any any")) no memory should have
been leaked.

2 of 6

Question 2: Linked list polynomials (40)

In this question you need to write a class Poly to manipulate large polynomials. Suppose the following
polynomial is given:

0.45− 1.89x2 + 3.4x5 + 9x16

We’d manipulate this polynomial in the code below. Internal to the class, it would be stored in a linked list
representation like that shown to the right.

int main() {

Poly p;

p.add_term(0.45, 0);

p.add_term(1.89, 2);

p.add_term(3.4, 5);

p.add_term(9, 16);

cout << p.eval(0.0) << endl; // Should output 0.45

cout << p.eval(1.0) << endl; // Should output 10.96

return 0;

}

0

0.45

2

-1.89

5

3.4

16

9

1. Write a class Poly that has both add_term and eval methods.

2. Ensure that your class has destructor to cleans up allocated memory.

3. Add a method that determines whether two polynomials have the same degree. In the example above,
p.eq_deg(q) should return true if and only if q is of degree 16. (That is, the term with non-zero
coefficient possessing greatest degree in q is x16).

3 of 6

Question 3: Recursive maximum (25)

Here is a declaration of a class that allows one to define a tree:

class TreeNode {

public:

TreeNode(TreeNode *l_child, TreeNode *r_child, double v);

double get_value();

TreeNode *get_left();

TreeNode *get_right();

protected:

double val; // Value stored at this node

TreeNode *left; // Pointer to my left child, NULL if none

TreeNode *right; // Pointer to my right child, NULL if none

};

Write a function which, given a pointer to the root (i.e., the top) of a tree, returns the largest element in the
tree. Assume that all the values are non-negative numbers. Here is the appropriate declaration:

double tree_max(TreeNode *tree)

For example, given that root points to the following structure, tree_max(root) should return 89.0

56.8

23.1

4.545.8

5.92

89.0

7.6

13.5 0.5

root

Since all the values are non-negative, have tree_max(...) return 0 if the pointer is NULL.
Important hint: The title of this question is recursive maximum.

4 of 6

Question 4: Is there a loop in my linked list? (30)

The following defines a node in a singly linked list.

struct item_t {

string str; // Some data we’re storing

item_t *next; // Linked item in list

};

A friend is using this definition but thinks there’s a bug in their code because one of their functions seems
to run forever. You suspect that one of the next pointers is referring back to something earlier. Write a
function that, given a pointer to the head of a list of item_ts, determines whether the list has a loop in it.

5 of 6

Question 5: Vehicles and registration taxes (40)

Imagine that you would like a class to refer to various vehicles for computing registration taxes. Classes
are used to describe vehicles which bear a licence plate, and should have a method setReg() that sets the
licence string. A function getReg() should return the associated licence string. Additionally, the function
getFee() should return a float that is the annual renewal fee in dollars. The following code should be
valid:

int main(int argc, char **argv) {

Trailer *oneHorseSlant = new Trailer();

Car *lincolnCont = new Car("TX567");

ElectricCar *tesla = new ElectricCar("TX945");

oneHorseSlant->setReg("TX642");

printTaxDetails(oneHorseSlant);

printTaxDetails(lincolnCont);

printTaxDetails(tesla);

delete oneHorseSlant;

delete lincolnCont;

delete tesla;

}

This would output the following when run:
TX642 Tax for trailers is $50

TX567 Tax for cars is $200

TX945 Tax for electric cars is $100

The particular fee is associated with each type of vehicle, and the fee should be read only.

1. Define a class that is appropriate for vehicles.

2. Define Trailer, Car, and ElectricCar classes, with ElectricCar being a subclass of Car.
Note from the example the way these are created.

3. Create the function printTaxDetails to print the license string followed by the renewal fee of
any vehicle passed to it. Look at the example output above.

END OF THE PRACTICE QUESTIONS

6 of 6

